2 research outputs found

    Evaluation on the Effectiveness of 2-Deoxyglucose-6-phosphate phosphatase (DOGR1) Gene as a Selectable Marker for Oil Palm (Elaeis guineensis Jacq.) Embryogenic Calli Transformation Mediated by Agrobacterium tumefaciens.

    No full text
    DOGR1, which encodes for 2-deoxyglucose-6-phosphate phosphatase, has been used as a selectable marker gene to produce transgenic plants. In this study, a transformation vector, pBIDOG, which contains the DOGR1 gene, was transformed into oil palm embryogenic calli mediated by Agrobacterium tumefaciens strain LBA4404. Transformed embryogenic calli were exposed to 400 mg l–1 2-deoxyglucose (2-DOG) as the selection agent. 2-DOG resistant tissues were regenerated into whole plantlets on various regeneration media containing the same concentration of 2-DOG. The plantlets were later transferred into soil and grown in a biosafety screenhouse. PCR and subsequently Southern blot analyses were carried out to confirm the integration of the transgene in the plantlets. A transformation efficiency of about 1.0% was obtained using DOGR1 gene into the genome of oil palm. This result demonstrates the potential of using combination of DOGR1 gene and 2-DOG for regenerating transgenic oil palm

    Production of polyhydroxybutyrate in oil palm (Elaeis guineensis Jacq.) mediated by microprojectile bombardment of PHB biosynthesis genes into embryogenic calli

    No full text
    Biodegradable plastics, mainly polyhydroxybutyrate (PHB), which are traditionally produced by bacterial cells, have been produced in the cells of more than 15 plant species. Since the production of biodegradable plastics and the synthesis of oil in plants share the same substrate, acetyl-coenzyme A (acetyl-CoA), producing PHB in oil bearing crops, such as oil palm, will be advantageous. In this study, three bacterial genes, bktB, phaB and phaC, which are required for the synthesis of PHB and selectable marker gene, bar, for herbicide Basta resistant, were transformed into embryogenic calli. A number of transformed embryogenic lines resistant to herbicide Basta were obtained and were later regenerated to produce few hundred plantlets. Molecular analyses, including PCR, Southern blot and real-time PCR have demonstrated stable integration and expression of the transgenes in the oil palm genome. HPLC and Nile Blue A staining analyses confirmed the synthesis of PHB in some of the plantlets
    corecore